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SUMMARY 
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, 
partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is 
partitioned into a series of smaller grids for applications which require an external large memory device such 
as the SSD of the CRAY X-MP/48 or multi-tasking. The accuracy and stability of the composite grid scheme 
have been tested by numerically simulating the flow over an ellipsoid at an angle of attack and comparing 
the solution with a single-grid solution. The flow field over a projectile at M = 0.96, 1-1 and 4" angle of 
attack has been computed using a fine grid and compared with experiment. 
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1. INTRODUCTION 

The transonic flow over bodies of revolution is of considerable interest in aerodynamics. The 
critical aerodynamic behaviour occurs in this speed regime and a rapid change in the aerody- 
namic coefficients is observed. The flow field is complex owing to the presence of shocks and can 
be characterized by strong viscous-inviscid, shock-boundary layer interactions. At low transonic 
speeds, weak shock waves begin to form. As the speed is increased to M = 1, the shocks become 
larger and stronger. Further complications often occur in practical flows of interest owing to the 
presence of separated flow regions; this is especially true for flow at moderate to high angles of 
attack. As a result, it is desirable to use the Navier-Stokes computational technique to compute 
such flows. 

In recent years Na~ier-Stokesl-~ computational methods have been used to compute flow 
over bodies of revolution at transonic speeds. In Reference 1 the three-dimensional flow over a 
boat-tailed afterbody was computed where the primary emphasis was on the boat-tail flow field. 
Calculations of three-dimensional flow over a projectile have been made in Reference 2; however, 
the wake or base region flow was not computed due to lack of capability to compute such flows. 
The wake region has been included in a three-dimensional flow field computation in Reference 3. 
These calculations were made with the thin layer form of the compressible Navier-Stokes 
equations which were solved using the implicit Beam and Warming central finite difference 
~ c h e m e . ~ - ~  Generally, these calculations did not have sufficient grid resolution due to lack of 
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adequate computer resources. With the advent of computers such as the CRAY X-MP/48 and 
CRAY 2 and the availability of the large memory (the core memory of the CRAY 2 and the fast 
external memory device SSD of the CRAY X-MP/48), it is now possible to use the fine 
computational grids needed for three-dimensional numerical simulation of transonic flows. 
Reference 7 is an excellent example where the CRAY 2 computer was used to perform transonic 
flow computations over a hemispherical cylinder at high angles of attack using its large in-core 
memory. In the present work we make extensive use of the SSD device of the CRAY X-MP/48 to 
provide sufficient grid resolution. This necessitates splitting the database of a large single grid into 
smaller pieces that fit within the in-core memory of the X-MP/48. While this break-up can be 
achieved in various ways, the simplest approach is to break the single grid into a number of 
smaller grids. 

The numerical scheme used is an implicit scheme based on flux splitting8 and upwind spatial 
differencing in the streamwise direction. Upwind schemes can have several adavantages over 
central difference schemes, including natural numerical dissipation and better stability properties. 

The accuracy of the composite grid scheme has been tested by numerically simulating the 
transonic flow over an ellipsoid at lo" angle of attack and comparing this result with the result 
obtained with a single grid. In addition, the flow over a secant-give-cylinder-boat-tail projectile 
has been computed using a fine grid at M = 0-96, 1.1 and 4" angle of attack. These computed 
results have been compared with experimental data to determine the accuracy of the numerical 
predictions. In Section 2 the governing equations, numerical procedure and composite grid 
scheme are described. Results are presented in Section 3. 

2. NUMERICAL METHOD 

Governing equations 

energy can be represented in flux vector form as 
The three-dimensional hyperbolic system of conservation equations of mass, momentum and 

dtQ + a,(% + %,) + a,@ + G,) + a,(H + A,) = 0, (1) 
where the independent variable z is the time and the spatial independent variables 5, q and are 
chosen to map a curvilinear body-conforming discretization into a uniform computational space. 

The general co-ordinate transformations 

5 = 5(x, Y ,  2, t ) ,  

rl= V ( X ,  Y ,  z, t ) ,  

r = r(x ,  Y ,  z, t) ,  
z= t 

are used. 
Here Q contains all the dependent variables and %, G and H are the inviscid fluxes: 

Q =  J - 1  1 
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(2) 

where J is the Jacobian of the co-ordinate transformation. 
The flux terms %,, G, and H, contain viscous derivatives, and throughout a non-dimensional 

form of the equations is used. The conservative form of the equations is maintained chiefly to 
capture the Rankine-Hugoniot shock jump relations as accurately as possible. 

The Cartesian velocity components u, u and ware non-dimensionalized with respect to a, (the 
free stream speed of sound), the density p is referenced to pa and the total energy e to paa2,. 
Pressure is defined as 

p = ( y  - l)[e - 0*5p(u2 + v2 + w2)], (3) 

where y is the ratio of specific heats. 

Cartesian components u, u and w by the relations 
The contravariant velocity components are denoted by U, V and W and are related to the 

Finally the metric terms are obtained from chain rule expansion of x,,  y s ,  etc. and solved for tX, 
ty, etc. to give 

with 

For body-conforming co-ordinates and high-Reynolds-number flow where [ is the co-ordinate 
away from the surface, the thin layer approximation can be made in the [-direction. Such 
approximation is valid for attached and mildly separated flows as examined by Pulliam and 
Steger.6 The governing equation (1) can then be written as 
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Here K is the coefficient of thermal conductivity, p is the dynamic viscosity and Pr is the Prandtl 
number. The viscous terms in 5 have been collected into the vector 8 and the non-dimensional 
reciprocal Reynolds number is extracted to indicate a viscous flux term. 

In differencing these equations it is often advantageous to difference about a known base 
solution, denoted by subscript 0, as 

where 6 indicates a general difference operator and a is the differential operator. If the base state 
can be properly chosen, the differenced quantities can have smaller and smoother variation and 
therefore less differencing error. Although various choices are available for the base state, the free 
stream is used as a base solution in the present formulation and does satisfy the equation. 

Implicit jinite difference algorithm 

For simplicity we begin with equation (6) which can be rewritten as 

The time differencing is 

where 6 is a parameter which determines the type of scheme used. For example, 6 = 1 corresponds 
to the Euler implicit method whereas 0 = 4 leads to the second-order time accurate 
Crank-Nicolson scheme. Substituting equation (9) into equation (lo), one has 

@+' = Q" - At[0(8,@+ avG + 8,H - Re-'J$)"+' 
+ (1 - 6)(8,@ + a,e + aLH - Re- 'dcg)"]  + O(At2). (1 1) 

Equation (1 1) is non-linear since @, G, H and s are functions of the dependent variable Q. The 
non-linearity can be removed by a linearization procedure. As in the Beam-Warming alg~ri thm,~ 
the following time linearization is used: 

@) + O(At*),  (12) @ W + I  = @ W + A n ( @ + l -  

where A is a Jacobian matrix, 
time level are linearized and result in Jacobian matrices B, 

= aP/aQ. Similarly, the flux vectors G, H and 8 at the (n + 1)th 
and M respectively.6 Using the 
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above linearization, equation (1 1) can now be written in delta form (AQ" = @ + I  - @): 
[I + t?At(6,in + S,B" + 8$" - Re-'GcJ-' M"J) ]AQ" 

= - At[S,%"+ S , G "  + S,An - Re-'&@"', (13) 
where 6 is a second-order accurate spatial difference operator and 8 is a midpoint operator. Using 
approximate factorization, the left-hand-side operator of equation (1 3) can be factored into three 
factors, one in each direction. In addition, if 6 is a central finite difference operator, then we have 
the standard Beam and Warming scheme. Alternately, one can construct the two-factored 
algorithm proposed by Steger and Buning' which consists of upwind differencing in the 
streamwise direction and central differencing in the other two directions. Such a scheme obtained 
from equation (13) is as follows: 

[I+OAt(6",n+6~&')][I+OAt(S;en-Re-'&cJ-'&J)]AQn= RHS, (14) 
where RHS is the right-hand side of equation (13): 

RHS = - At S,P + S,Gn + #,A" - Re-'S58". 

A variant of this scheme is one where flux vector splitting is used in the streamwise 5-direction. 
If % satisfies the homogeneous property F = A Q  and A has a complete set of linearly independent 
eigenvectors, then the flux vector F can be split into two subvectors. The eigenvalues associated 
with $+ are all positive and those associated with P- all negative, i.e. approximate backward and 
forward upwind differencing can then be used with these subvectors @ +  and @ -  respectively. The 
flux vector @ is thus split as* 

p = p + + p - .  (15) 

@ = k Q  = xAx-'Q, where A is a diagonal matrix which can be split into A' and A -  based on 
positive and negative eigenvalues respectively. 

% = x ( A +  + A - ) x - ~ Q = ( ~ + + A - ) Q .  (16) 

The Jacobian matrix is thus split as 
A = A + + A - .  

In general co-ordinates the five eigenvalues of d are given by 

where 
m = (11, 1 2 ,  13, 1 4 ,  A d T ,  

1, = 1, = 1, = u, 
A4= u + cJ(5: + 5,' + 53, 

1s = u - cJ(s: + 5; + r 3  
and c = J(YP/P) .  

Using the above flux vector splitting, a two-factored algorithm similar to equation (14) can be 

(I + BAtLP+)(I + t ?AtY- )A@ = - A t  S,b(p+)n + 6;(fi-)" + S , G "  + S,Hn - Re-'&*, (18) 
constructed: 

where the operators 2' and LP- are given by 
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The operator (I + tIAt9') is a lower triangular matrix containing a second-order backward 
difference operator (6;) in 5 and a central difference operator (6,) in [. The other operator 
(I + BAtLZ-) is an upper triangular matrix containing a second-order forward difference 
operator (d:) in and a central difference operator (6,) in q. Typically, 6: and 6; are three-point 
difference operators and 8 is the midpoint operator used with the viscous terms. 

The final form of the implicit two-factored flux-split algorithm used in this study is given as 

[I + h6!@+)" + h 6 , P  - h R e - ' z C J - ' ~ I " J -  Dilr] [I + hd: ( f - )"  + ha,,& - Dil,,]AQ" 

= -At{6;[(@+)"-%;] +Si[(P-)"-%,] + 6 , ( G " - G ; , )  
+ b,(H" - H,) - Re-'&.(@' - s,)] - D,(Q" - Q,), 

where h = At or At12 and the free stream base solution is used. Artificial dissipation operators D, 
and Di are used in the central space differencing directions. The added artificial dissipation is a 
combination of second-order as well as fourth-order terms. To eliminate oscillations near shocks, 
it is desirable to use second-order numerical dissipation locally near shocks and fourth-order 
dissipation elsewhere. These dissipation terms are of the form 

where p(B) is the spectral radius of B and 

Here P is the non-dimensional pressure, E~ is O( 1) and c4 is O(O1). Near high-pressure-gradient 
regions such as shoclis, f i  becomes large; thus second-order dissipation is used while the fourth- 
order dissipation is reduced. Similar artificial dissipation terms are also used in the 5-direction. 
The implicit dissipation Di works on AQ and thus accuracy is not impaired. 

The factored left-hand-side operators of equation (20) can be readily inverted by sweeping and 
inversion of tridiagonal matrices with 5 x 5 blocks. This two-factor implicit scheme is readily 
vectorized or multi-tasked in planes of g = constant. 

Composite grid scheme 

In the present work a composite grid scheme has been developed in which a large single grid is 
split into a number of smaller grids, so that each of these grids can use the available core memory 
in turn while the rest are stored on the SSD device. The use of such a composite scheme, however, 
requires special care in storing and fetching the interface boundary data. 

If a code is well written in a modular form for a single grid, it is a relatively simple task to 
reconfigure it either as a composite grid code or a blocked grid data structure code using an 
external large memory device such as the SSD of the CRAY X-MP/48. The numerical scheme is 
not a highly sensitive issue. The simplest case to begin with is the blocked grid data structure code 
in which a single large grid is partitioned into a series of smaller grid blocks as sketched in 
Figure 1. Such a partitioning (or domain decomposition) of a single original grid may come about 
because all of the single grid will not fit into a particular computer's high-speed memory or 
geometric constraints, or because a block iterative technique is in use. Partitioning can also be 
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Figure 1. Single grid partitioned into smaller grids 

influenced by different flow regimes, and in fact different numerical schemes can be used in 
different blocks. To make a code that works for a single grid work for a partitioned grid, it is 
necessary to build and verify an external data management scheme for a block update process 
(e.g. block iterative or block time-dependent process). In a block update scheme, if data from one 
subgrid are used to update the interface boundary of another subgrid, the sub-block solution will 
approach the solution of the single grid. (We say 'approach' because the differencing approxi- 
mations near a boundary may drop in order of accuracy or use metrics evaluated in a different 
manner. Likewise, iterative convergence may be less tight in a given block.) 

A code developed for a single grid can be made to work for a block grid structure by 
(1) mapping and storing the information for each grid onto a large memory and (2) supplying 
interface boundary arrays, pointers and updating procedures. Consider the situation in Figure 1 
in which the single grid from J = 1 to Jmaxis partitioned into three grids. Although not shown in 
this figure, the base (or wake) region of a projectile is easily included by adding one or more zones 
in that region. We begin the procedure with grid G1. For each grid an estimated solution (or 
initial quess) is put into the large memory along with all pertinent information such as the grid, 
metrics, M,, Re, etc. These data are brought into the working memory and appropriate 
boundary update information is also called in and used to update any interface boundaries. At 
this point only the problem of dealing with a single-grid code must be dealt with. Solution 
variables are updated as before (more than one iterative update per subgrid is possible or interface 
boundaries can be iteratively corrected). The updated solution is then stored back into large 
(external) memory. Also stored into the appropriate locations is any information needed to 
update other interface boundaries. We then proceed to the next subgrid and so on. 

The main problem of any blocked or composite grid scheme is the problem of storing and 
fetching the interface boundary data from its appropriate place, i.e. setting up the proper book- 
keeping. Additional complications come about when we try to make blocked grids with interface 
boundaries give a solution that is identical to the solution obtained by a single large grid with no 
interface boundaries. This involves maintaining the same or equivalently good metrics, differ- 
encing accuracy, conservation statements, etc. at or near the interface boundaries that would exist 
on a continuous smooth grid. One choice which allowed simpler management of the interface 
boundary data while still maintaining second-order accuracy is described below. 

Three-point backward and forward difference operators are used at the interior points. Near 
the interface, for example, at J2 = J,,,, - 1, the three-point forward difference operator cannot 
be used with the one-grid-point overlap used and as shown in Figure 1.The differencing accuracy 
can be dropped from second-order to first-order; however, as will be shown in the results, this 
leads to inaccuracies in the flow field solution near the interfaces. To maintain second-order 
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accuracy near the interfaces, we difference, for example, aF/a< at J ,  and J2,,,- 1 as 

where 8; is the usual three-point backward difference operator and a: is now a central difference 
operator, i.e. 

(22) 

Near the other interface of grid G2(J2 = 2), the corresponding 8; operator is replaced by a central 
difference operator while a: is the usual three-point forward difference operator. The planes 
J ,  = 1 and J, = J2,,, are, of course, boundaries for grid G2 and get their data from interior 
flow field solutions from neighbouring grids. Second-order accuracy at and near the interfaces 
is thus maintained. Partial use of central differencing near the interfaces has not adversely 
affected the stability of the scheme. 

For the simple partitioning shown in Figure 1, all subgrid points are members of the original 
grid and no interpolation is required. This procedure thus has the advantage over patched or 
overset grid schemes which need interpolations. The partitioned grid has four interface bound- 
aries: J, = J,,,., J ,  = 1, J, = J,,,, and J 3  = 1. Data for these planes are to be supplied from the 
other grids by injecting interior values of the other grids onto the interface boundaries. For 
example, the J ,  = JlmaX boundary of G1 may be taken as the J, = 2 or J ,  = 3 plane interior 
values of G2. More overlap would mean more implicit-like behaviour since more exchange of 
information would take place. Because only one grid and some boundary and pointer arrays can 
be in the working memory at one time, a low-storage scheme to shuffle data from one grid to 
another must be used. In working on grid G1, all of the usual data Q, x, y ,  z, . . . of grid G1 plus 
the interface boundary data stored in an array, say QB, from grids G2, G3, . . . will have to be in 
working memory. The array QB need only store Q on the interface boundary since other data 
such as metrics on the interface boundary can be computed from the usual data x,  y, z, . . . . After 
updating grid GI, interface boundary data needed by the other grids from G1 should be loaded 
into the array QB while all data of G1 are still in memory. The data array QB should be shuffled 
back into a permanent large external memory, say QBC, in such a way that it can be readily 
brought back for grids G2, G3, etc. There are several ways to store QB in memory; the approach 
selected here is flexible and is used in the Chimera code." 

aF 3F]-4Fi-,fF;-, FY+l-F;-l 
2A5 ' 

+ _ -  
a t  - 2 A t  

Other computational aspects 

As pointed out earlier, e=+ or 1 in equation (18) or h = A t / 2  or At in equation (20) depends 
on the time accuracy of the scheme. 0=+ is used for second-order accuracy in time 
(Crank-Nicolson method). For our present computatins the final steady state is the desired result. 
Thus a first-order time accurate Euler implicit scheme (0 = 1) is used. To accelerate convergence 
one can also use time step sequences or spatially variable time steps. For a fixed At the Courant 
number is not uniform since the grid spacings usually vary from very fine to very coarse in the 
flow field domain of interest. The use of a space-varying A; can thus be interpreted as an attempt 
to use a more uniform Courant number throughout the field. 

For an aerodynamic simulation where the grid is highly stretched, we can use a purely 
geometric variation of At given by 
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where Atref is a reference-fixed At. Such scaling has been used by other researchers."*12 The time 
step h in equation (20) is then replaced by At given in equation (23). 

The typical boundary conditions required for our problems consist of: 

(a) the body surface at the 5 = 1 plane 
(b) free stream conditions at the c = cmaxplane 
(c) axis conditions at the I/I = 1 plane 
(d) extrapolation at the downstream boundary (5  = <,,,ax) 

(e) periodic condition of the cross-flow plane (q) for the full 3D case or symmetry condition for 

The no-slip boundary condition for viscous flow is enforced by setting the contravariant velocities 
to zero, i.e. 

the half 3D case. 

u =  v =  w=o. (24) 
The Cartesian components are obtained by the inverse of equation (4) or 

The density at the body surface is usually obtained by a zeroth-order extrapolation from the 
interior of the flow field for adiabatic conditions. The pressure on the body surface is computed 
from the normal momentum equation6 

(Vt.VC)P{ + (Vtl.VC)P, + (v1:.Vc)p, = P(a*c, + U(V5M - PU(VC.U,) - P v(vc*u,) (26) 
which is solved numerically. The variables on the axis are obtained by averaging the extrapolated 
values from the interior points around the axis. Dirichlet boundary conditions are used at the free 
stream or far field boundary. 

For the computation of turbulent flows, a turbulence model must be supplied. In the present 
calculations for transonic flow past a projectile, a two-layer algebraic eddy viscosity model due to 
Baldwin and Lomax' is used. In their two-layer model, the inner region follows the Prandtl-Van 
Driest formulation. The outer formulation can be used in attached and mildly separated 
boundary layers, and with minor modifications in wakes as well. In both the inner and outer 
formulations the distribution of vorticity is used to determine the length scales, thereby avoiding 
the necessity of finding the outer edge of the boundary layer (or wake). This simple model is not 
strictly valid for the complicated wake flows that exist behind the bluff base of a projectile. 
Higher-order turbulence models may lead to improved accuracy in this area. 

3. RESULTS 

The implicit time-marching procedure was used to obtain the desired steady state result starting 
from initial free stream conditions everywhere Boundary conditions were updated explicitly at 
each time step. The 1, norm of the residual dropped at least three orders of magnitude before 
converged solutions were obtained. In addition, the surface pressure distribution was checked for 
time invariance. Solutions have been obtained for two cases: (i)flow over an ellipsoid at 
M, = 0.90 and a = lo", primarily to check the accuracy of the composite grid solution; and 
(ii) flow over a projectile at M, = 0.96, 1.1 and a = 4" which is calculated using a fine grid. 
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First, the flow over an ellipsoid at M = 0.90 and 10" angle of attack was considered. Figure 2 
shows the computational grid for the ellipsoid. Figure 2(a) shows the surface of the ellipsoid while 
Figure 2(b) is a cross-section of the full grid showing the longitudinal grid point distribution. This 
grid has 41 points in the streamwise direction, 18 points in the circumferential direction and 31 

1 

Figure 2(a). Surface grid for the ellipsoid 

1 
X 

I 

Figure qb). Longitudinal cross-section of the computational grid 
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points in the normal direction. Such a small grid was chosen so that the full grid solution could be 
obtained using a CRAY X-MP/48 with a two-million-word central core memory. The full grid 
was then partitioned into three smaller grids and the SSD device was used to obtain the solution 
for this composite grid scheme. Figure 3 shows the surface pressure distribution on the lee side. 
Here the full grid solution is shown as a solid line and the composite grid solution as a dashed 
line. The differences in these curves are apparent and occur near X = 0.3 and 0.8 at the interfaces 
between the partitioned grids. The spatial accuracy at the interface was first-order in this case. 
Improving the spatial differencing accuracy at these boundaries to second-order resulted in the 
solution shown in Figure4. As shown in this figure, the composite grid solution is virtually 
identical to the full grid solution. 

Second, the flow over a projectile at a transonic speed M ,  = 096 and at a higher transonic 
speed M ,  = 1.1 for a = 4" was computed. The model used for the experiment and computational 
study presented here is an idealization of a realistic artillery projectile geometry. The exper- 
imental model shown in Figure 5 consists of a three-calibre (one calibre = maximum body 
diameter), sharp, secant-ogive nose, a two-calibre cylindrical mid-section and a one-calibre 7 O 

conical afterbody or boat-tail. A similar model was used for the computational studies with the 
only difference being a 5% rounding of the nose tip. The nose tip rounding was done for 
computational efficiency and is considered to have little impact on the final integrated forces. 

Experimental pressure data14*1s are available for this shape and were obtained in the NASA 
Langley eight-foot Pressure Tunnel using a sting-mounted model. The test conditions of 1 atm 
supply pressure and 320 K supply temperature resulted in a Reynolds number of 4.5 x lo6 based 
on model length. 

The computational grid used is shown in Figure 6. Figure qa) shows the longitudinal cross- 
section of the 3D grid while Figure 6(b) shows the circumferential distribution of grid points. The 
grid consists of 162 points in the streamwise direction, 36 points in the circumferential direction 
and 50 points in the normal direction. This amounts to a little over twelve million words of 
storage for the code on the CRAY X-MP/48. Only up to 4 Mw of central core memory was easily 

0.0 0.2 0.4 0.6 0.0 i. o 
X / C  

Figure 3. Surface pressure distribution, lee side; M, = @90, a = 10" (first-order accuracy at interface) 
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0.0 0.2 0.4 0.6 0.8 I .o 
X/C 

Figure 4. Surface pressure distribution, lee side; M, = 0.90, a = 10" (second-order accuracy at interface) 

+----- 4.584 -------+ 
ALL DIMENSIONS IN CALIBERS 

Figure 5. Model geometry of a projectile 

accessible; therefore the full grid was partitioned into four smaller grids, each of which would use 
the core memory in turn while the rest was stored on the SSD device. This computation was 
performed on the CRAY X-MP/48 at the US Army Ballistic Research Laboratory. As shown in 
Figure 5, the clustering of grid points near the body surface is done to resolve the viscous 
boundary layer near the body surface. Grid clustering has also been used in the longitudinal 
direction near the boat-tail and the base corners where large gradients in the flow variables are 
expected. In addition, the grid is made to wrap around the base corner to facilitate the generation 
of the large single grid. What affect it has on the base region flow is currently under investigation 
and has not been studied here. The primary emphasis in this research was on the use of the 
composite grid technique itself. 
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Figure @a). Computational grid (longitudinal cross-section) 

Figure qb). Computational grid (circumferential distribution) 

Figures 7 and 8 show the pressure contours and Mach contours for the projectile in the 
windward and leeward planes. As seen in Figure 7, the pressure contours show the expansions at 
the ogivesylinder, boat-tail and base corners. The expansions at the base corners are rather 
weak. This figure also indicates the presence of shock waves on the cylinder and on the boat-tail. 
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Figure 7. Pressure contours; M, = 0.96, a = 4" 

Figure 8 shows the Mach number contours. It clearly shows the expansions and shock structure 
that typically occur on the projectile at transonic speeds. Sharp shocks are clearly observed on the 
boat-tailed flow field which are also asymmetrically located (the one on the wind side being closer 
to the base than its counterpart on the lee side.) This figure also indicates the presence of strong 
free shear layers in the base region flow field and shows the expected asymmetric flow pattern in 
the wake. The asymmetric wake flow can be better seen in Figure 9 which shows the velocity field 
in the near wake for both the wind as well as the lee side. The recirculatory flow pattern in the 
base region is evident. Three separated flow bubbles can be clearly seen in this figure. The 
experimental model was sting-mounted in the base region and current work is in progress to 
model the sting before accuracy of the base region flow prediction can be determined. In the 
present computation the sting has not been modelled. 

Figure 10 shows the surface pressure distribution as a function of the longitudinal position for 
the wind side. The computed result is compared with experimental data14 (circles) and is seen to 
be in very good agreement. The expansions and recompressions near the ogive-cylinder and 
cylinder-boat-tail junctions are captured adequately by the computations. Comparison of the 
surface pressure on the lee side is shown in Figure 11. A small discrepancy can be seen on the 
cylinder and boat-tail sections. The computed result, however, is generally in good agreement 
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Figure 8. Mach contours; M, = 0.96, a = 4" 

Figure 9. Velocity vectors in the base region; M, = 096, a = 4" 
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Figure 10. Longitudinal surface pressure distribution, wind side; M, = 0.96, a = 4" 
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Figure 11. Longitudinal surface pressure distribution, lee side; M, = 096, a = 4" 

with the experimental data. Figures 12 and 13 show the circumferential surface pressure 
distributions for longitudinal positions X / D  = 5.19 and 5.56 respectively. Both of these longitudi- 
nal positions are on the boat-tail. In these figures the present computed result is compared with 
experimental data (circles) and also with a previous computational result obtained on a rather 
coarse mesh.3 Apart from the small discrepancy near the lee side (4 = 180"), the present 
computed result is in good agreement with the experimental data and is more accurate than the 
previous computed result (see Figure 12). The agreement of the present result with experiment is 
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Figure 12. Circumferential surface pressure distribution; M, = 0.96, u = 4", X / D  = 5.19 
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Figure 13. Circumferential surface pressure distribution, M, = 0.96, a = 4", X / D  = 5.56 
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Figure 14. Longitudinal surface pressure distribution, wind side; M, = 1.1, a = 4" 
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Figure 15. Longitudinal surface pressure distribution, lee side; M ,  = 1.1, a = 4" 

very good near the wind side (# = 0). Figure 13 shows the circumferential surface pressure 
comparison at a longitudinal position X / D  = 5-56. As seen in this figure, the present numerical 
result is in excellent agreement with the experimental data. The improved accuracy of the present 
numerical prediction compared with the previous coarse grid solution is obvious. 

Numerical solution has also been obtained at a high transonic speed M, = 1.1 and a = 4". 
Comparisons of the longitudinal surface pressure distributions for both wind side and lee side 
have been made with experimental dataI4 and are shown in Figures 14 and 15. The agreement of 
the computed surface pressures with experiment is very good. At this high transonic Mach 
number, the shocks on the cylinder as well as on the boat-tail are very weak as evidenced by the 
absence of a sharp rise in pressure in those areas. Strong shock waves occur at lower transonic 
Mach numbers, for example at M, = 0.96 and a = 4" (see Figure 10). The expansions and 
recompressions near the ogive-cylinder and cylinder-boat-tail junctions can be clearly observed 
in Figures 14 and 15. 

4. CONCLUDING REMARKS 

In conjunction with a new Navier-Stokes code, a simple composite grid scheme has been 
developed which allows the fine computational grids needed for accurate tansonic flow com- 
putations to be obtained on a CRAY X-MP/48 computer. The numerical method uses an implicit, 
approximately factored, partially upwind (flux-split) algorithm. 

The accuracy and stability of the composite grid scheme have been tested by numerically 
simulating the flow over an ellipsoid at angle of attack (M = 0.90, a = 10") and comparing this 
solution with a single-grid solution. The flow fields over a projectile at M ,  = 0.96,l.l and a = 4" 
have ben computed using a fine grid and compared to experiment. The computed surface 
pressures are in very good agreement with the experimental data. Currently work is in progress to 
analyse and determine the accuracy of the wake region flow. Future work will be directed to 
determining the critical aerodynamic behaviour at transonic speeds. 
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